| People | Locations | Statistics |
|---|---|---|
| Mouftah, Hussein T. |
| |
| Dugay, Fabrice |
| |
| Rettenmeier, Max |
| |
| Tomasch, Ernst | Graz |
|
| Cornaggia, Greta |
| |
| Palacios-Navarro, Guillermo |
| |
| Uspenskyi, Borys V. |
| |
| Khan, Baseem |
| |
| Fediai, Natalia |
| |
| Derakhshan, Shadi |
| |
| Somers, Bart | Eindhoven |
|
| Anvari, B. |
| |
| Kraushaar, Sabine | Vienna |
|
| Kehlbacher, Ariane |
| |
| Das, Raj |
| |
| Werbińska-Wojciechowska, Sylwia |
| |
| Brillinger, Markus |
| |
| Eskandari, Aref |
| |
| Gulliver, J. |
| |
| Loft, Shayne |
| |
| Kud, Bartosz |
| |
| Matijošius, Jonas | Vilnius |
|
| Piontek, Dennis |
| |
| Kene, Raymond O. |
| |
| Barbosa, Juliana |
|
Hautzinger, Heinz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Entwicklung eines Verfahrens zur Generierung eines Safety Performance Indikators aus der Bewertung von Euro NCAP ; Method Development Study on Generating a Safety Performance Indicator based on Euro NCAP Assessment Results
- 2020Motorräder Mobilitätsstrukturen und Expositionsgrößen ; Motorcycles – Mobility structure and exposition data
- 2018The German Vehicle Mileage Survey 2014: Striking the balance between methodological innovation and continuitycitations
- 2017Fahrleistungserhebung 2014 - Inländerfahrleistung ; German vehicle mileage survey 2014 - Kilometers travelled by German motor vehicles
- 2015Fahrleistungserhebung 1990. Ziele, Datengrundlagen und erste Ergebnisse
- 2015Verkehrsmobilität und Unfallrisiko in der Bundesrepublik Deutschland
- 2012Expansion of GIDAS sample data to the regional level : statistical methodology and practical experiences
- 2012Crash involvement studies using routine accident and exposure data : a case for case-control designs
- 2012Multi-level statistical models for vehicle crashworthiness assessment : an overview
- 2011Ermittlung von Standards für anforderungsgerechte Datenqualität bei Verkehrserhebungen
- 2010Fahrleistungserhebung 2002 - Inlandsfahrleistung und Unfallrisiko ; Kilometres travelled in Germany and accident risk in 2002
- 2010Ermittlung von Standards für anforderungsgerechte Datenqualität bei Verkehrserhebungen. Bundesanstalt für Straßenwesen - Reihe Verkehrstechnik
- 2010Ermittlung von Standards für anforderungsgerechte Datenqualität bei Verkehrserhebungen
Places of action
| Organizations | Location | People |
|---|
conferencepaper
Multi-level statistical models for vehicle crashworthiness assessment : an overview
Abstract
Empirical vehicle crashworthiness studies are usually based on national or in-depth traffic accident surveys: Data on accident-involved cars/drivers are analysed in order to quantify the chance of driver injury and to assess certain risk factors like car make and model. As the cars/drivers involved in the same accident form a "cluster", where the size of the cluster equals the number of accident-involved parties, traffic accident survey data are typical multi-level data with accidents as first-level or primary and cars/drivers as secondlevel or secondary units (car occupants in general are to be considered as third level units). Consequently, appropriate statistical multi-level models are to be used for driver injury risk estimation purposes as these models properly account for the cluster structure of traffic accident survey data. In recent years various types of regression models for clustered data have been developed in the statistical sciences. This paper presents multi-level statistical models, which are generally applicable for vehicle crashworthiness assessment in the sense that data on single and multiple car crashes can be analysed simultaneously. As a special case of multi-level modelling driver injury risk estimation based on paired-by-collision car/driver data is considered. It is demonstrated that assessment results may be seriously biased, if the cluster structure inherent in traffic accident survey data is erroneously ignored in the data analysis stage.
Topics
Search in FID move catalog