Mobility Compass

Discover mobility and transportation research. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Mobility Compass is an open tool for improving networking and interdisciplinary exchange within mobility and transport research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

To Graph

8.032 Topics available

To Map

944 Locations available

509.604 PEOPLE
509.604 People People

509.604 People

Show results for 509.604 people that are selected by your search filters.

←

Page 1 of 20385

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Mouftah, Hussein T.
  • 1
  • 1
  • 2
  • 2025
Dugay, Fabrice
  • 3
  • 17
  • 6
  • 2025
Rettenmeier, Max
  • 4
  • 4
  • 28
  • 2025
Tomasch, ErnstGraz
  • 57
  • 166
  • 211
  • 2025
Cornaggia, Greta
  • 1
  • 4
  • 0
  • 2025
Palacios-Navarro, Guillermo
  • 1
  • 4
  • 2
  • 2025
Uspenskyi, Borys V.
  • 1
  • 3
  • 0
  • 2025
Khan, Baseem
  • 8
  • 38
  • 115
  • 2025
Fediai, Natalia
  • 6
  • 4
  • 6
  • 2025
Derakhshan, Shadi
  • 1
  • 0
  • 0
  • 2025
Somers, BartEindhoven
  • 13
  • 42
  • 246
  • 2025
Anvari, B.
  • 9
  • 31
  • 126
  • 2025
Kraushaar, SabineVienna
  • 2
  • 13
  • 0
  • 2025
Kehlbacher, Ariane
  • 10
  • 18
  • 14
  • 2025
Das, Raj
  • 3
  • 3
  • 17
  • 2025
Werbińska-Wojciechowska, Sylwia
  • 12
  • 12
  • 25
  • 2025
Brillinger, Markus
  • 4
  • 42
  • 4
  • 2025
Eskandari, Aref
  • 2
  • 13
  • 18
  • 2025
Gulliver, J.
  • 9
  • 74
  • 555
  • 2025
Loft, Shayne
  • 1
  • 9
  • 0
  • 2025
Kud, Bartosz
  • 1
  • 6
  • 0
  • 2025
Matijošius, JonasVilnius
  • 33
  • 89
  • 297
  • 2025
Piontek, Dennis
  • 6
  • 33
  • 30
  • 2025
Kene, Raymond O.
  • 2
  • 2
  • 30
  • 2025
Barbosa, Juliana
  • 3
  • 15
  • 11
  • 2025

Hautzinger, Heinz

  • Google
  • 13
  • 14
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2022Entwicklung eines Verfahrens zur Generierung eines Safety Performance Indikators aus der Bewertung von Euro NCAP ; Method Development Study on Generating a Safety Performance Indicator based on Euro NCAP Assessment Resultscitations
  • 2020Motorräder Mobilitätsstrukturen und Expositionsgrößen ; Motorcycles – Mobility structure and exposition datacitations
  • 2018The German Vehicle Mileage Survey 2014: Striking the balance between methodological innovation and continuity8citations
  • 2017Fahrleistungserhebung 2014 - Inländerfahrleistung ; German vehicle mileage survey 2014 - Kilometers travelled by German motor vehiclescitations
  • 2015Fahrleistungserhebung 1990. Ziele, Datengrundlagen und erste Ergebnissecitations
  • 2015Verkehrsmobilität und Unfallrisiko in der Bundesrepublik Deutschlandcitations
  • 2012Expansion of GIDAS sample data to the regional level : statistical methodology and practical experiencescitations
  • 2012Crash involvement studies using routine accident and exposure data : a case for case-control designscitations
  • 2012Multi-level statistical models for vehicle crashworthiness assessment : an overviewcitations
  • 2011Ermittlung von Standards für anforderungsgerechte Datenqualität bei Verkehrserhebungencitations
  • 2010Fahrleistungserhebung 2002 - Inlandsfahrleistung und Unfallrisiko ; Kilometres travelled in Germany and accident risk in 2002citations
  • 2010Ermittlung von Standards für anforderungsgerechte Datenqualität bei Verkehrserhebungen. Bundesanstalt für Straßenwesen - Reihe Verkehrstechnikcitations
  • 2010Ermittlung von Standards für anforderungsgerechte Datenqualität bei Verkehrserhebungencitations

Places of action

Chart of shared publication
Pfeiffer, Manfred
5 / 5 shared
Bäumer, Marcus
7 / 9 shared
Kuhnimhof, Tobias
2 / 31 shared
Köhler, Katja
1 / 6 shared
Lenz, Barbara
1 / 51 shared
Stock, Wilfried
2 / 2 shared
Heidemann, Dirk
1 / 9 shared
Krämer, Brigitte
1 / 1 shared
Tassaux, Brigitte
1 / 1 shared
Schmidt, Jochen
2 / 4 shared
Wermuth, Manfred
3 / 16 shared
Schmitz, Susanne
3 / 3 shared
Kathmann, Thorsten
3 / 11 shared
Sommer, Carsten
3 / 138 shared
Chart of publication period
2022
2020
2018
2017
2015
2012
2011
2010

Co-Authors (by relevance)

  • Pfeiffer, Manfred
  • Bäumer, Marcus
  • Kuhnimhof, Tobias
  • Köhler, Katja
  • Lenz, Barbara
  • Stock, Wilfried
  • Heidemann, Dirk
  • Krämer, Brigitte
  • Tassaux, Brigitte
  • Schmidt, Jochen
  • Wermuth, Manfred
  • Schmitz, Susanne
  • Kathmann, Thorsten
  • Sommer, Carsten
OrganizationsLocationPeople

conferencepaper

Multi-level statistical models for vehicle crashworthiness assessment : an overview

  • Hautzinger, Heinz
Abstract

Empirical vehicle crashworthiness studies are usually based on national or in-depth traffic accident surveys: Data on accident-involved cars/drivers are analysed in order to quantify the chance of driver injury and to assess certain risk factors like car make and model. As the cars/drivers involved in the same accident form a "cluster", where the size of the cluster equals the number of accident-involved parties, traffic accident survey data are typical multi-level data with accidents as first-level or primary and cars/drivers as secondlevel or secondary units (car occupants in general are to be considered as third level units). Consequently, appropriate statistical multi-level models are to be used for driver injury risk estimation purposes as these models properly account for the cluster structure of traffic accident survey data. In recent years various types of regression models for clustered data have been developed in the statistical sciences. This paper presents multi-level statistical models, which are generally applicable for vehicle crashworthiness assessment in the sense that data on single and multiple car crashes can be analysed simultaneously. As a special case of multi-level modelling driver injury risk estimation based on paired-by-collision car/driver data is considered. It is demonstrated that assessment results may be seriously biased, if the cluster structure inherent in traffic accident survey data is erroneously ignored in the data analysis stage.

Topics
  • assessment
  • data
  • driver
  • automobile
  • vehicle occupant
  • estimating
  • modeling
  • survey
  • regression analysis
  • crashworthiness
  • crashworthiness
  • resident
  • injury
  • data analysis
  • traffic crash
  • Aeo
  • Sadb
  • Talf
  • Tanaabcaa
  • Talc
  • Ccbc
  • Pafa
  • Scc
  • Pin
  • Tanbcb
  • Faagdb
  • Iheg
  • Fd
  • Sada
  • Fbabh

Search in FID move catalog